ملخص درس الأعداد المركبة ما هي خصائص الأعداد المركبة رياضيات
تعريف الأعداد المركبة
أمثلة على الأعداد المركبة
مرحباً بكم زوارنا الكرام في موقعنا باك نت يسرنا بزيارتكم أن نقدم لكم من الحلول الثقافية والتاريخية والاخبارية والتعليمية إجابة السؤال ألذي يقول..ملخص درس الأعداد المركبة ما هي خصائص الأعداد المركبة رياضيات
الإجابة هي
الأعداد المركبة
العدد المركب هو أي عدد ع يمكن كتابته على الصورة: ع = أ +ب ت حيث أ، ب هي أعداد حقيقية، و ت = جذر ال -1 ويسمى أ الجزء الحقيقي من العدد المركب، و ب الجزء التخيلي من العدد المركب، ويمكننا تعريف مجموعة الأعداد المركبة "ك" بالشكل التالي: ك = { ع: ع= أ+ ب ت حيث أ، ب تنتميان ل ح، ت= جذر ال -1 } .
التمثيل البياني للأعداد المركبة
كل عدد مركب يكتب بطريقة وحيدة على الصورة أ+ب ت، ولذا فإن هذا العدد يعين بواسطة زوج مرتب من الأعداد الحقيقية (أ،ب) والذي يمكن تمثيله إما بنقطة في المستوى الديكارتي؛ إحداثياها (أ،ب) أو بالمتجه القياسي الذي يبدأ من نقطة الأصل، وينتهي بالنقطة التي إحداثياتها (أ،ب).
ويسمى المستوى الإحداثي (الديكارتي) نتيجة هذا التمثيل بمستوى الأعداد المركبة أو مستوى آرجاند تكريماً للعالم الفرنسي آرجند، ويطلق على المحور الرأسي عندئذ اسم المحور التخيلي، ويطلق على المحور الأفقي اسم المحور الحقيقي.
العمليات على الأعداد المركبة وخصائصها
تساوي عددين مركبين: يتساوى العددان المركبان ع1 =أ+ب ت، و ع2 =ج+ د ت، إذا وفقط إذا كان أ=ج، و ب=د.
عملية الجمع على مجموعة الأعداد المركبة: يتم جمع العددين ع1=أ+ب ت، و ع2 =ج+د ت، من خلال العلاقة الآتية: (أ+ج) + (ب+د) ت، وعملية الجمع على الأعداد المركبة هي مغلقة، وتجميعية، وتبديلية، ويوجد لها عنصر محايد ونظير جمعي.
عملية الطرح على مجموعة الأعداد المركبة: يتم طرح العددين ع1=أ+ب ت، و ع2 =ج+د ت، من خلال العلاقة الآتية: (أ-ج) + (ب-د) ت.
عملية الضرب على الأعداد المركبة: يتم ضرب العددين ع1=أ+ب ت، و ع2 =ج+د ت، من خلال العلاقة الآتية: (أ ج - ب د) + (أ د + ب ج) ت، وعملية الضرب على الأعداد المركبة هي مغلقة، وتجميعية، وتبديلية، ويوجد لها عنصر محايد ونظير جمعي.
عملية القسمة بين عددين مركبين: يمكن إجراء عملية قسمة عددين مركبين بأن يتم ضرب كلٍّ من البسط والمقام في مرافق المقام لجعل المقام عدداً حقيقيا، فإذا كان ع1 =س1 + ص1 ت، ع2 = س2 + ص2 ت، حيث ع2 لا يساوي صفر، فإن ع1\ع2 =( س1 + ص1 ت\ س2 + ص2 ت) times; (س2 - ص2 ت\ س2 - ص2 ت).
وتستخدم الأعداد المركبة في العديد من التطبيقات التي تدخل في حياتنا، كالهرباء، والديناميكا، والنظرية النسبية، وميادين الفيزياء المختلفة، وهذه الأعداد هي أعداد مرنة لها القدرة على الوصول إلى النتيجة النهائية بشكل مرضٍ.